Aurantioporthia corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia

Garrett L. Beier
Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108

Stan C. Hokanson
Department of Horticultural Science, University of Minnesota, St Paul, Minnesota 55108

Scott T. Bates
Robert A. Blanchette
Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108

Abstract: Cryptodiaporthia corni is the causal agent of a destructive disease called golden canker, which affects Cornus alternifolia, known as the pagoda or alternate-leaved dogwood. Due to the association between Cr. corni and pagoda dogwood, we sought to determine whether this fungus was capable of living as an endophyte in pagoda dogwood and causing this disease. Forty asymptomatic stems of plants growing in nature were sampled from five sites across Minnesota. Cryptodiaporthia corni was present in more than half (62.5%) of the stems. Asymptomatic nursery material was also sampled, and the fungus was isolated from a small percentage (20%) of them. Inoculations carried out in the field and greenhouse suggested the endophytic isolates of Cr. corni were capable of causing disease. Asymptomatic stems of trees in the field inoculated with non-colonized (control) grain seed developed golden canker as frequently as those inoculated with grain seed colonized by Cr. corni, suggesting that the fungus was already present in these plants. In greenhouse pathogenicity trials an isolate of Cr. corni obtained from an asymptomatic stem was capable of causing golden canker disease, thus demonstrating causality, fulfilling Koch’s postulates. The taxonomic placement of Cr. corni within Cryptonectriaceae was determined. Phylogenetic analysis of the ITS rDNA and β-tubulin gene regions, along with morphological characteristics, suggested Cr. corni is distinct from other genera within this family. Therefore, we propose a new genus, Aurantioporthia, as well as the new combination, A. corni, to accommodate this species within Cryptonectriaceae.

Key words: Cryptonectriaceae, Diaporthales, golden canker, pagoda dogwood

Introduction

Pagoda dogwood or alternate-leaved dogwood (Cornus alternifolia L.) is native to the eastern half of North America (USDA 2013), and is most frequently found in rich woodlands and swampy thickets growing as a small understory tree, 3.0–7.5 m tall (Cullina 2002). The tree can be found in managed landscapes, with the major limitation to the use of pagoda dogwood in landscaping being the occurrence of golden canker caused by Cryptodiaporthia corni (Wehm.) Petrak. Cornus alternifolia is considered the only host of this widespread disease, which occurs throughout most of the host’s range (Redlin and Rossman 1991). The disease is easily recognized by the small, bright orange pycnidia that appear on the cankered wood as raised protrusions on the surface of the dead bark (Redlin and Rossman 1991). The infection typically moves down the stem until it reaches a branch attachment or node. On some stems the fungus can progress past branch nodes and move into the main stem, killing the entire stem (Beier 2013). Infected plants can persist for years, sending new shoots that result in a cycle of regrowth and dieback.

Cornus alternifolia is currently grown in many states where it is not native, and golden canker disease is widespread and prevalent in many of these locations. For example, Cr. corni has been collected in eastern South Dakota, nearly 200 miles from native stands of pagoda dogwood in central Minnesota and Iowa, while landscape plantings infected with this fungus also have been found as far north as Fargo, North Dakota (Redlin and Stack 2001). The common association between Cr. corni and C. alternifolia led Sinclair and Lyon (2005) to hypothesize that the fungus was likely an endophyte of pagoda dogwood. Therefore, distribution patterns for this pathogen might be the result of the presence of Cr. corni within plants transported from nurseries, in addition to more typical means for disease transmission, such as wind dispersal of spores.

Endophytes typically are defined as fungi that live asymptotically within plants; however, a wide variety of definitions exist for the term (Hyde and Sotyong 2008). Whether latent pathogens should be
considered endophytes is still a matter of debate (Wennstrom 1994, Wilson 1995, Mostert et al. 2000, reviewed by Hyde and Soytong 2008, Porras-Alfaro and Rayman 2011). Herein we use the definition of Petrini (1991): “All organisms inhabiting plant organs that, at some time in their life, can colonize internal plant tissues without causing apparent harm to the host.” This definition includes fungi, such as *Cr. corni* that may live within plants but function as latent pathogens.

Although currently placed in Cryptodiaporthe Petrak within Gnomoniaceae (Petrak 1941), phylogenetic studies suggest *Cr. corni* belongs in Cryptonectriaceae (Castlebury et al. 2002, Gryzenhout et al. 2006, 2010). This placement is also supported by the staining reaction of *Cr. corni*, in which the orange pigmentation of its stromatic tissue turns purple in the presence of KOH (Redlin and Rossman 1991). This reaction occurs in all members of Cryptonectriaceae and has been used to differentiate this family from others in the Diaphorales that do not react in this manner (Gryzenhout et al. 2006). Gryzenhout et al. (2006) further suggested the need for a new generic placement of *Cr. corni* in Cryptonectriaceae due to its phylogenetic position. Because Gryzenhout et al. (2006) had access to only two isolates, they recommended study involving more isolates before establishing a new genus to accommodate this species. Subsequent phylogenetic studies also have suggested a distinct position for *Cr. corni* within Cryptonectriaceae (Begoude et al. 2010, Gryzenhout et al. 2010, Chen et al. 2013a, Crane and Burgess 2013); however, formal taxonomic revisions have not been undertaken.

The objectives for this study were to (i) investigate whether *Cr. corni* exists as an endophyte asymptptomatically within its host, *Cornus alternifolia*, (ii) verify *Cr. corni* as the cause of golden canker on pagoda dogwood by fulfilling Koch’s postulates and (iii) carry out an assessment of the phylogenetic position of *Cr. corni* within Cryptonectriaceae.

Materials and methods

Endophytic assessment.—Plant samples were collected from five sites across Minnesota. Three sites had natural stands of *C. alternifolia*: Itasca State Park (47°11’48.56”N, 95°10’15.56”W), Great River Bluffs State Park (43°56’16.48”N, 91°24’56.64”W), and William O’Brien State Park (45°13’25.43”N, 92°45’57.85”W). The other two sites had both natural and managed landscapes: University of Minnesota at St Paul (44°59’13.78”N, 95°11’1.81”W) and the Minnesota Landscape Arboretum (44°51’37.99”N, 93°37’5.30”W). All trees were categorized as naturally occurring or transplants at each site. Within each site stems were collected at two different times, first in Apr and later in Jul. Sixteen plants were labeled at each site. For each collection at all locations, four plants with at least one stem showing no symptoms of the disease were randomly selected. An asymptomatic stem from each plant was cut. Ten of old *Cornus alternifolia*, 1.1–1.8 m tall, were also cut at ground level from a production nursery field. The nursery plants had been treated with fungicides approximately every 2 wk during the six mo before collection (Supplementary Table I). After stems were cut, all leaves and branches were removed from the main stem (Supplementary Fig. I). The bottom 8 cm of the stem were discarded, and the remaining stem was cut into 15 cm long segments. The first segment was saved and labeled as segment 1, the next 15 cm segment was discarded, the third was labeled segment 2 etc. until reaching the apical meristem. Segments were sterilized as follows: 70% ethanol (EtOH) for 1 min, 20% bleach solution (5.25% available CI) for 3 min and 70% EtOH for 30 s. The stem segments then were allowed to dry in a laminar flow hood. After drying, the 15 cm stem segments were cut around the circumference down to the xylem at 5 and 10 cm to make a ring approximately 3 mm wide. Each ring was removed and cut into five smaller pieces and plated onto acidified 1.5% malt extract agar (MEA) containing 0.20% lactic acid (Supplementary Fig. I). Samples were placed in a transparent container in the lab and monitored for fungal growth for 1 mo. Fungal colonies growing out of the wood pieces were subcultured and plated onto 1.5% MEA. Once the fungus was isolated it was identified by morphological characteristics including orange stromatic tissue, the lack of aerial mycelium and the characteristic purple staining reaction in the orange stromatic tissue with application of 3% KOH (Redlin and Rossman 1991).

Field inoculations.—Twenty pagoda dogwood plants with asymptomatic branches were randomly selected at the Great River Bluffs State Park in Minnesota. The branches selected were 1.5–2.5 m from the ground. The cultures of *Cr. corni* used for field inoculations were isolated from two different plant exhibiting cankers; one from the Great River Bluffs State Park in Minnesota (MNS1005) and the other from the University of Minnesota at St Paul campus (MNS1007) (Table I). For inoculations, isolates were grown on wheat grain for 18 d (Beier 2013). Control grain was made by sterilizing wheat grain and inoculating with a plug of noncolonized 1.5% MEA.

All trees were inoculated with the control grain (mock-inoculated treatment) and either the MNS1005 or the MNS1007 inoculated grain (inoculated treatment) in Mar 2012. Twenty trees were numbered and odd-numbered trees were inoculated with MNS1005 and the even-numbered trees were inoculated with MNS1007. From each tree two branches were selected for treatment by wounding followed by placement of inoculated or control grain. Wounding consisted of cutting off the branch directly below a node (within 1 cm) creating a stub of internodal stem. Branches and tools were surface-sterilized before wounding with a 70% EtOH solution. Three of the inoculated or control grain seeds were placed on each of the wounds. The wound was wrapped with Parafilm to retain moisture and reduce the likelihood of contamination.
Table I. Geographical origin of isolates and samples of *Aurantioporella corni* collected from *Cornus alternifolia* used in this study

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS1001<sup>d</sup></td>
<td>Redding, CT</td>
<td>Kitka, K.</td>
<td>KF495033</td>
<td>KF495063</td>
<td>MIN 936355</td>
</tr>
<tr>
<td>DES1001<sup>c</sup></td>
<td>Greenville, DE</td>
<td>Highland, A.</td>
<td>KF495034</td>
<td>KF495064</td>
<td>NA</td>
</tr>
<tr>
<td>DES1002<sup>d</sup></td>
<td>Newark, DE</td>
<td>Mulrooney, R.</td>
<td>KF495035</td>
<td>KF495065</td>
<td>MIN 936354</td>
</tr>
<tr>
<td>IAS1001<sup>c</sup></td>
<td>Ames, IA</td>
<td>Rummery, S.</td>
<td>KF495037</td>
<td>KF495067</td>
<td>NA</td>
</tr>
<tr>
<td>IAS1002<sup>c</sup></td>
<td>Dallas Center, IA</td>
<td>Schmitz, A.</td>
<td>KF495038</td>
<td>KF495068</td>
<td>NA</td>
</tr>
<tr>
<td>ILS1001<sup>c</sup></td>
<td>Chicago, IL</td>
<td>Beier, G.</td>
<td>KF495036</td>
<td>KF495066</td>
<td>NA</td>
</tr>
<tr>
<td>MES1001<sup>c</sup></td>
<td>Boothbay, ME</td>
<td>Cullina, W.</td>
<td>KF495039</td>
<td>KF495069</td>
<td>NA</td>
</tr>
<tr>
<td>MIS1001<sup>c</sup></td>
<td>Ontonagon, MI</td>
<td>Beier, G.</td>
<td>KF495040</td>
<td>KF495070</td>
<td>NA</td>
</tr>
<tr>
<td>MNS1001<sup>c</sup></td>
<td>Carlos Avery WMA, MN</td>
<td>Beier, G.</td>
<td>KF495041</td>
<td>KF495071</td>
<td>NA</td>
</tr>
<tr>
<td>MNS1002<sup>c</sup></td>
<td>Great River Bluffs State Park, MN</td>
<td>Beier, G.</td>
<td>KF495042</td>
<td>KF495072</td>
<td>NA</td>
</tr>
<tr>
<td>MNA1005<sup>c</sup></td>
<td>William O’ Brien State Park, MN</td>
<td>Beier, G.</td>
<td>KF495043</td>
<td>KF495073</td>
<td>NA</td>
</tr>
<tr>
<td>MNS1005<sup>c</sup></td>
<td>Great River Bluffs State Park, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MNS1007<sup>c</sup></td>
<td>University of Minnesota, St. Paul, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MNS1008<sup>c</sup></td>
<td>Pillsbury State Forest, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MNA1009<sup>c</sup></td>
<td>Minnesota Landscape Arboretum, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MNS1010<sup>d</sup></td>
<td>Frontenac State Park, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>MIN 936359</td>
</tr>
<tr>
<td>MNS1011<sup>d</sup></td>
<td>Interstate State Park, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>MIN 936356</td>
</tr>
<tr>
<td>MNS1012<sup>d</sup></td>
<td>Minneapolis, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>MIN 936361</td>
</tr>
<tr>
<td>MNS1013<sup>d</sup></td>
<td>Minnesota Landscape Arboretum, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>MIN 936360</td>
</tr>
<tr>
<td>MNS1014<sup>d</sup></td>
<td>Whitewater State Park, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>MIN 936357</td>
</tr>
<tr>
<td>MNS1015<sup>d</sup></td>
<td>William O’Brien State Park, MN</td>
<td>Beier, G.</td>
<td>NA</td>
<td>NA</td>
<td>MIN 936358</td>
</tr>
<tr>
<td>NCS1001<sup>c</sup></td>
<td>Ashville, NC</td>
<td>Blue, L.</td>
<td>KF495044</td>
<td>KF495074</td>
<td>NA</td>
</tr>
<tr>
<td>PAS1001<sup>c</sup></td>
<td>Philadelphia, PA</td>
<td>Beerley, T.</td>
<td>KF495045</td>
<td>KF495075</td>
<td>NA</td>
</tr>
<tr>
<td>SDS1001<sup>c</sup></td>
<td>Freeman, SD</td>
<td>Beier, G.</td>
<td>KF495046</td>
<td>KF495076</td>
<td>NA</td>
</tr>
<tr>
<td>WS1001<sup>c</sup></td>
<td>Burlington, WI</td>
<td>Beier, G.</td>
<td>KF495047</td>
<td>KF495077</td>
<td>NA</td>
</tr>
</tbody>
</table>

^aThe first two letters in the isolate number are abbreviations for the state collected from and the third letter represents whether the host plant was symptomatic or asymptomatic (S = symptomatic, A = asymptomatic).

^bForest Pathology Culture Collection, University of Minnesota, St Paul, Minnesota.

^cIsolates used for phylogenetic analysis.

^dSamples used for morphological study.

<sup*e</sup>Isolates used for pathogenicity study.

Branches were collected and observed 3 mo post inoculation (MPI). Observations were taken on lesion length, percent internode necrosis measured vertically from the wound to the first node down from the wound, lesion advance past the nearest node and presence of pycnidia. Pycnidia were confirmed to be *Cr. corni* by microscopic observations and use of KOH as described above. Branch segments for each treatment were sampled to determine if the fungus was present. Bark segments were taken from areas exhibiting pycnidia, and the segments were taken from necrotic regions. Segments were plated onto acidified 1.5% MEA with 0.20% lactic acid. The fungus was subcultured and identified as described above.

Greenhouse inoculations.—Thirty 30–45 cm tall bareroot *Cornus alternifolia*, 1 y old liners, were grown in size 3 containers with Sun Gro’s Metro-Mix 950 (Sun Gro, Agawam, Massachusetts) media. Plants were grown under natural light conditions for 9 mo in a greenhouse at the University of Minnesota at St Paul and were watered weekly. Five isolates (Table I) and a mock-inoculated control were used. For each of the five different isolates and the mock-inoculated treatment five plants were used. The inoculated and control grain seed were prepared as described above.

For inoculations, a wound was made by cutting off the apical portion of the main stem, approximately 46 cm above the soil. The area to be inoculated was surface-sterilized with a paper towel soaked in 95% EtOH. A hand pruner was used to cut just below the node that was closest to 46 cm resulting in a stub of internodal stem. Three pieces of grain were placed onto the end of the cut stem and held in place with Parafilm. After inoculation the plants were randomly arranged in a cooler maintained at 10 C with no light. After 1 mo the plants were taken out of the cooler and...
placed in a random arrangement in the greenhouse. Plants were watered when a majority of the plants showed slight wilting in their leaves.

Observations and measurements were made at seven MPI for percent internode necrosis measured vertically from the wound to the first node down from the wound, presence of pycnidia and lesion progression beyond the node immediately below the wound. All plants were sampled to determine whether the fungus was present. Cuts were made 15 cm below the initial cut, and the segments were surface-sterilized as described above. Bark rings were made 1.25 cm above and below the advancing front of the lesion, and the fungus was isolated and identified as described above.

Analysis.—All categorical data were analyzed using a 2×2 contingency table. Graph Pad Software (Graph Pad Software Inc., La Jolla, California) was used to perform Fisher’s exact test on all contingency tables. Continuous data was analyzed using a Student’s t-test in R 2.9.2 (R Development Core Team, Vienna, Austria). A chi-squared test was used to analyze the difference between the presence of fungi on the top half of the plant versus the bottom half, and a linear mixed model (by REML) was used to examine relationships between stem diameter and the increased probability of finding the fungus.

Isolates and DNA extraction.—Samples of *Cr. corni* were obtained from across the eastern United States and have been deposited in the Forest Pathology Culture Collection, University of Minnesota (Table 1). Isolates were obtained from samples of *Cornus alternifolia* with visible pycnidia of *Cr. corni* except for isolate MNA1003, which was taken from an asymptomatic stem. Bark segments from the advancing canker or pycnidia on the surface of the canker were plated onto Petri dishes containing acidified 1.5% MEA containing 0.2% lactic acid. The fungus was subcultured to 1.5% MEA containing 0.05% yeast extract to promote the growth of aerial mycelium. A cetyl trimethylammonium bromide (CTAB) procedure was used to extract DNA from each isolate as described in Beier (2013).

PCR and sequencing.—Sequences of the nuc rDNA ITS1-5.8S-ITS2 regions (ITS) and exons 6 and 7 of the β-tubulin gene (*TUB*) were examined in the phylogenetic analysis. The ITS region was amplified with the ITS1/ITS4 primer pair (White et al. 1990). The Btla and Bt1b primers were used for *TUB* (Glass and Donaldson 1995). PCR were carried out in a PTC-200 thermal-cycler (MJ Research, Watertown, Massachusetts). The amplification reaction mixtures were based on that of Blanchette et al. (2010). The PCR protocol followed that of Arenz and Blanchette (2009) for amplification of the ITS gene region. For *TUB* the following protocol was used: 94°C for 1 min, 30 cycles of 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min. For sequencing 4.9 µL water, 0.75 µL PCR product and 0.42 µL 10 µM primer was used. Samples were sent for sequencing to the University of Minnesota Genomics Center. Forward and reverse sequencing for all amplified products was done with an ABI 3730xL DNA sequencer (Applied Biosystems, Foster City, California). Consensus sequences for individual contigs were assembled and edited with ChromasPro 1.42 (Technelysium Ltd., Helensvale, Australia). Sequences were aligned with ClustalW in MEGA 5.05 (Tamura et al. 2011). The alignments were manually assessed, and ambiguous regions were excluded. Alignments contained sequences from 65 isolates: 16 *Cr. corni*, 47 Cryphonectriaceae and two outgroups (*Diaporthe ambigua*). For each genus in Cryphonectriaceae two sequences from the type species were used. Also, a single representative for each taxon in Cryphonectriaceae with both ITS and *TUB* sequences available in GenBank were included. Alignments are available at TreeBASE. (http://purl.org/phylo/treebase/phylows/study/TB2:S151157x-access-code=fc40570b5a9a01859a8e3d2a0d45b5ea&format=html).

Phylogenetic analysis.—Maximum likelihood (ML) and Bayesian (BI) analyses were performed. To determine whether the gene regions could be combined for analysis, a model comparison was carried out with Bayes factors in MrBayes 3.2.1 (Ronquist et al. 2012). To determine the appropriate model, jModelTest 2.1.4 (Darriba et al. 2012, Guindon and Gascuel 2003) was used. For both the ITS and TUB regions the selected models were not implemented in MrBayes 3.2.1, therefore the next most complex model (GTR + I + G) was used. Four chains were run for 10,000,000 Markov chain Monte Carlo (MCMC) generations with a sampling frequency every 1000 generations. The first 25% of sampled trees were eliminated as burn in. To calculate Bayes factors Tracer 1.5 (Drummond and Rambaut 2007) was used. Maximum likelihood analysis was conducted with GARLI (genetic algorithm for rapid likelihood inference; Zwickl 2006) and grid computing (Cummings and Huskamp 2005) through the Lattice Project (Bazinet and Cummings 2008). A fast ML stepwise-addition algorithm was used to generate a starting tree. To assess the confidence levels of branches, 1000 bootstrap replicates were used. MrBayes 3.2.1 was used for BI. The same parameters as described above were used. A consensus tree was generated from two individual runs for both gene regions.

Morphology.—Morphological characteristics were examined on eight canker samples containing both sexual and asexual fruiting structures. Samples were collected from six sites in Minnesota, one site in Connecticut and one site in Delaware (Table 1). Asci, ascospores and conidia were examined under light microscopy at 1000× by preparing squash mounts and staining with 0.25% cotton blue. Twenty measurements were made for asci and spore types for each sample. Perithecia and pycnidia were placed in 3% KOH to determine color change. Microscopic sections were made to obtain measurements for perithecia, pycnidia and conidiophores. Sections were made by infiltrating bark samples with 25% tissue freezing medium (Electron Microscopy Sciences, Hatfield, Pennsylvania). Sections, 10–20 µm, were cut with a freezing microtome at −20°C. Sections were stained with 0.25% cotton blue and measured at 400× for fruiting bodies and 1000× for conidiophores. For each tissue sample 10 measurements were taken on each type of fruiting body and for conidiophores. Color descriptions follow the system of Rayner (1970). Microscopic measurements were made with a Nikon Labophot (Nikon Instruments Inc., Melville, New York). All images were taken with
RESULTS

Endophytic assessment.—Plants at field sites were categorized as either native (naturally occurring) or landscaped (planted). A higher percentage of the native plants (68%) were found to have *Cr. corni* compared with the landscape plants (44.5%), but the difference was not statistically significant (*P* = 0.26). *Cryptodiaporthe corni* was isolated from asymptomatic stems at Minnesota sites, with the April collection having a slightly higher rate of occurrence (65% on average) than that of July (60% on average), although it was not found to be statistically significant (*P* = 1). There was considerable variation in the number of plants with the fungus present at the different sites, but when April and July collections were combined the difference between locations was not found to be statistically significant (*P* = 0.15). The proportion of segments within a plant with the fungus present varied widely 0–100% with a mean of 33%.

A pattern was observed within individual stems, where a majority of the plants had the fungus present in more segments from the bottom half of the stem than the top. For stems with the fungus present, 52.5% of the plants had more segments containing *Cr. corni* in the bottom half of the plant compared with the top and only 5% had more segments containing *Cr. corni* found in the top half of the plant compared with the bottom (*P* < 0.001). The remaining plants with the fungus present had equal amounts of infection in the bottom and top halves. Diameters for the 15 cm segments were 2.7–21.0 mm. Statistical analysis under a linear mixed model (by REML) was used to determine the potential relationship between segment diameter and presence or absence of the fungus. It was found that within a tree the probability of finding the fungus increased 1.15 times for each unit increase (mm) in segment diameter.

Cryptodiaporthe corni was obtained from two of the trees (20%) from the asymptomatic nursery plants. When the fungus was isolated, it was found near the base of the plant. In the two plants where the fungus was found it was located in the lowest and second lowest 15 cm segment in one plant and the lowest 15 cm segment for the other.

Field inoculations.—No statistically significant differences existed between the mock-inoculated and inoculated treatments for any of the observations or measurements. When the two isolates (MNS1005, MNS1007) were compared there were also no statistical differences between any of the observations or measurements. The mock-inoculated treatment had a slightly higher percentage of branches with pycnidia present compared with the inoculated treatment, 94% compared to 83%, respectively, (*P* > 0.05). Also the mock-inoculated treatment had a higher average percentage of internode necrosis than the inoculated treatment, 97% and 83%, respectively (*P* > 0.05). Overall the fungus was isolated from 89% of samples from both the mock-inoculated and inoculated treatments. Two of the branch samples died due to golden canker so they were not included in analysis because the differences between treatments could not be assessed.

Greenhouse inoculations.—Differences were found between the mock-inoculated and inoculated groups. Only 20% of the stems in the mock-inoculated group were completely dead from the wound to the first node down, while 96% of the inoculated group was dead to the node (*P* < 0.05). Also the inoculated group had a higher proportion of lesions, which had advanced past the first node compared with the mock-inoculated group (16% versus 0%, respectively), but the difference was not found to be significant (*P* > 0.05). None of the mock-inoculated plants had any pycnidia present, and we were not able to reisolate the fungus from these plants, while in the inoculated group, 80% of plants treated had pycnidia present and 60% had *Cr. corni* reisolated from them (*P* < 0.05).

Variability existed in observations and measurements among the five isolates used in the experiment. By seven MPI all inoculation sources resulted in ≥ 80% of plants being dead to the node (*P* = 1.0). The greatest variation among the isolates was for the presence/absence of pycnidia on the plant tissue. At seven MPI, 20% of plants inoculated with MNA1003 (asymptomatic isolate source) had pycnidia, which was significantly different than three of the other isolates, which resulted in 100% of the plants with pycnidia (*P* < 0.05). However, the fungus was isolated from above the advancing front of the lesion in 60% of the plants treated with MNA1003, which was equal to the average of the other four isolates.

Phylogenetic analyses.—The model comparison using Bayes factors strongly suggested that the gene regions were not congruent (log10 Bayes factor = 24.144); therefore they were not combined for analysis. For the ITS gene region alignment there were 550 characters, including 332 constant characters, 199 parsimony-informative characters and 19 uninformative variable characters. For the TUB alignment there were 464 characters: 283 constant characters, 171 parsimony-informative characters and 10 uninforma-
tive variable characters. The best trees from the maximum likelihood analyses of ITS and TUB are presented (Figs. 1, 2, respectively).

Results from the phylogenetic analysis suggested that regardless of which gene region was used in the analysis Cr. corni forms a monophyletic clade, distinct from clades representing other genera within Cryptodiaportheae. These results were strongly supported in both the ML and BI analyses. The confidence level and posterior probability at the node separating Cr. corni from other genera was 95% and 1.0, respectively, in the ITS tree (Fig. 1) and 92% and 1.0, respectively, in the TUB tree (Fig. 2).

TAXONOMY

Aurantioporthet corni (Wehm.) G. Beier & Blanchette, gen. nov.

Type species: *Aurantioporthet corni* (Wehm.) G. Beier & Blanchette

Etymology: Latin, _aurantiacus_, orange, referring to the color of the pycnidia covering the bark of infected plants, and Greek, _porthe_, destroyer, describing the destructive capabilities of the fungus.

Sexual morph: Ascigerous stromata immersed to semi-immersed, orange, upper region eustromatic to pseudostromatic, lower region pseudostromatic. Perithecia singular or in groups of 2–4, valsoid to diatrypoid, surrounded by host tissue, globose to subglobose, 128–288 high × 200–348 μm wide (mean = 235 × 277; SD 28, 37; n = 70), beak 88–348 high × 88–200 μm wide at base (mean = 217 × 127; SD 51, 25; n = 70), 28–200 μm wide at beak opening (mean = 101; SD 34; n = 68), fuscous black, mature ostiolar necks emerge at stomatic surface having black apex. Asci fusiform to ellipsoidal to clavate, containing eight ascospores, refractile ring present. Ascospores hyaline, fusiform to ellipsoidal to pyriform, with a median to sub-median septum, occasionally with additional septa.

Asexual morph: Conidiomata separate from ascigerous stroma, orange, immersed to semi-immersed, irregularly subspherically to flattened, unilocular, single ostiole, cells near ostiole pseudoparenchymatous. Conidiophores obclavate, narrowing to a point, branched, conidiogenous cells phialidic. Conidia minute, hyaline, fusiform to ellipsoidal, septate, exuded as orange droplets.

Habitat: On/in _Corns alternifolia_ bark and phloem.

Distribution: USA, Canada.

Notes: On the basis of morphological differences and the phylogenetic analysis presented herein, the genus _Aurantioporthet_ is established to accommodate _A. corni_, the only known species in the genus. The morphological features that distinguish this genus from other genera in the family include a combination of single to multiple septate ascospores and ascigerous stromata and conidiomata immersed to semi-immersed in the bark.

Aurantioporthet corni (Wehm.) G. Beier & Blanchette, comb. nov.

Fig. 5a–f MycoBank MB807279

= _Phoma nitidum_ (Berk. and Curtis) Höhn., Z. Gärungphysiol. 5:208. 1915.

Sexual morph: Ascigerous stromata immersed to semi-immersed, orange, upper region eustromatic to pseudostromatic, lower region pseudostromatic. Perithecia singular or in groups of 2–4, valsoid to diatrypoid, surrounded by host tissue, globose to subglobose, 128–288 high × 200–348 μm wide (mean = 235 × 277; SD 28, 37; n = 70), beak 88–348 high × 88–200 μm wide at base (mean = 217 × 127; SD 51, 25; n = 70), 28–200 μm wide at beak opening (mean = 101; SD 34; n = 68), fuscous black, mature ostiolar necks emerge at stomatic surface having black apex, clypeus 95–240 μm wide (mean = 166; SD 33; n = 58). Asci fusiform to ellipsoidal to clavate, with eight ascospores, refractile ring present, 38–67 × 6–13 μm (mean = 54 × 8; SD 6, 1; n = 160), 6–14 μm wide at widest point (mean = 9; SD 2; n = 160). Ascospores 10–18 μm (mean = 13; SD 2; n = 160) hyaline, fusiform to ellipsoidal to pyriform, with a median to sub-median, slightly constricted septum, occasionally with additional septa, upper cell 5–10 × 3–7 μm (mean = 7 × 5; SD 1, 0.8; n = 160), lower cell 3–9 × 3–5 μm (mean = 6 × 4; SD 1, 0.7; n = 160).

Asexual morph: Conidiomata separate from ascigerous stroma, orange, immersed to semi-immersed, irregularly subspherically to flattened, unilocular, single ostiole, cells near ostiole pseudoparenchymatous. Conidiophores obclavate, narrowing to a point, branched, conidiogenous cells phialidic. Conidia minute, hyaline, fusiform to ellipsoidal, septate, exuded as orange droplets, 6–10 × 2–4 μm (mean = 7 × 3; SD 1, 0.5; n = 160).
Fig. 1. Best tree from the maximum likelihood phylogenetic analysis of ITS sequences, which shows the relationship between *Aurantioporthe corni* (≡ *Cryptodiapothecum corni*) and other members of *Cryptonecicaceae*. Included in the analysis are 16 *A. corni* isolates, 47 isolates of other *Cryptonecicaceae* and two isolates serving as outgroup (*Diapothecum ambiguum*). ML bootstrap values ≥ 70% (1000 replicates) are displayed above each branch node, and Bayesian posterior probabilities ≥ 0.70 are displayed below each branch node. Isolates of *A. corni* in boldface were sequenced. The newly proposed genus, *Aurantioporthe*, is in boldface. Sequences obtained from GenBank are followed by their accession numbers.
Fig. 2. Best tree from the maximum likelihood phylogenetic analysis of TUB sequences, which shows the relationship between Aurantioporthe corni (= Cryptodiaporthe corni) and other members of Cryphonectriaceae. Included in the analysis are 16 A. corni isolates, 47 isolates of other Cryphonectriaceae and two isolates serving as outgroup (Diaporthe ambigua). ML bootstrap values ≥ 70% (1000 replicates) are displayed above each branch node, and Bayesian posterior probabilities ≥ 0.70 are displayed below each branch node. Isolates of A. corni in boldface were sequenced. The newly proposed genus, Aurantioporthe, is in boldface. Sequences obtained from GenBank are followed by their accession numbers.
Fig. 3. Micrographs of the sexual morph (a, c, e) and asexual morph (b, d, f) of Aurantisporthe corni on Cornus alternifolia. a. Longitudinal section through the ascigerous stroma. b. Longitudinal section through the conidioma. c. Asci. d. Conidiophores. e. Ascospores. f. Conidia. Scale bars: a, b = 100 μm; c-f = 10 μm.
Habitat: On/in *Cornus alternifolia* bark and phloem.
Distribution: USA, Canada
Additional specimens examined: Diapotheca corni: GERMANY: Parc de Reichartsheim, on dead branches of *Cornus alba*, Fuchel (NY). *Massarina albocarnis*: CANADA: ONTARIO: London, on *Ostrya*, 1877, (PARATYPE NY 00921768 as *Diapotheca albocarnis*); ONTARIO: London, on *dead Ostrya virginica*, Jun 1892 (PARATYPE NY 00921767 as *Diapotheca albocarnis*); USA: NEW YORK: Mclean, on *Cornus stolonifera*, 14 May 1923 (NY as *Diapotheca albocarnis*).
Notes: Wehmeyer (1933) described *Aurantiopthora corni* Wehm., stating in the protolog, “‘Specimen typicum in Herb. New York Bot. Gard. Legit Dearness, prope London, Ontario.’” A lectotype for *Cr. corni* (Wehm.) Petrak was designated by Redlin and Rossman (1991) among three packets affixed to an herbarium sheet that matched Wehmeyer’s description but labeled *Diapotheca corni* F.uckel. The protolog for *Aurantiopthora corni* (Wehmeyer 1933) also cites authentic material representing this taxon among the exsiccati *Fungi Columbiani* (Barthol. *Diapotheca corni* No. 3809). Specimens of *Fungi Columbiani* No. 3809 that we examined from the New York Botanical Garden (NY Fun. Col. 3809) were *Aurantiopthora corni* and exhibited septate ascospores. This material is distinct from *D. corni* (Fuchel 1870), which the protolog suggests is a different fungus with aseptate ascospores and explains Wehmeyer’s (1933) mistaken inclusion of this taxon in the synonym of *Aipiotheca corni*.
Wehmeyer (1933) also cites a specimen of *Diapotheca albocarnis* Ellis and Everh. as authentic material representing *Aurantiopthora corni* Wehm. Our examination of type collections on *Cornus* among North American Fungi (Ellis and Everh. No. 2820; NY 00921764), however, proved to be mixed collections that included *Aurantiopthora corni*, a fact that Redlin and Rossman (1991) also recognized. After examining the type material of *D. albocarnis* on *Ostrya* (NY 00921767, NY 00921768), it was confirmed not to be *Aurantiopthora corni*. Barr (1992) considers *Massarina albocarnis* (Ellis and Everh.) M.E. Barr as the current name for *D. albocarnis*.
Redlin and Rossman (1991) cited an authentic specimen of *Cr. corni* from Maine that was sequenced by Castlebury et al. (2002) to resolve the phylogenetic placement of taxa within the Diaporthales. That sequence (GenBank AF408343, as “BPI 747916”), which has been included in the phylogenetic analysis here, actually corresponds to BPI 1107157 (Castlebury pers comm).
An asexual morph of *Cryptodiapotheca corni* (Wehm.) Petrak has long been recognized in *Myxosporium nitidum* Berk. and Curtis (Berkeley 1874). Peck (1878) described *Sphaerotheca aurantiaca* (= *Zythia aurantiaca* [Peck] Sacc. Syll. Fung. 3:614, 1884), a heterotypic synonym of *M. nitidum* (Redlin and Rossman 1991). Each of the anamorph-typified species names cited here reference the distinct orange coloration of the conidiomata and list *Cornus alternifolia* L. as the host. Under Article 59 of the International Code of Nomenclature for Algae, Fungi and Plants (Melbourne Code) pleomorphic fungi now must have only one name, and each of the legitimate names cited above (both sexual and asexual morphs) now compete for priority, leaving *Myxosporium nitidum* as the earliest name (McNeill et al. 2012). Article 57.2 of the Melbourne Code, however, recommends that anamorph-typified species names should not displace the teleomorph-typified name in cases where these names were widely used. Considering that the teleomorph-typified name has been used commonly in recent studies, especially when referring to “golden canker” disease, and the specific epithet “corni” refers specifically to the host, *Cornus L.*, on which the disease occurs, we propose the conservation of *Aurantiopthora corni* Wehm. following the provisions under Article 57.2 of the Melbourne Code. Likewise, and to avoid undue confusion under
the new “one fungus, one name” nomenclatural rules, the anamorph-type species names, _Mycosporium nitidum_ Berk. And Curtis and _Sphaeronema aurantiacum_ Peck, are proposed to be rejected. Thus, _Aurantioporthe corni_ (Wehm.) G. Beier & Blanchette comb. nov. should be used for both asexual and sexual states of the fungus described here.

DISCUSSION

This study has shown that _Aurantioporthe corni_ is capable of living as an endophyte in _Cornus alternifolia_, in that this fungus was found in a number of asymptomatic stems of _C. alternifolia_ throughout Minnesota. The fungus was found not only in plants from native stands but also those in managed landscapes as well as field-grown nursery stock, although with less prevalence. This is the first study to report _A. corni_ growing asymptptomatically as an endophyte in _C. alternifolia_, as hypothesized by Sinclair and Lyon (2005). Our study demonstrated that golden canker developed after mock-inoculating asymptomatic branches in the field, suggesting the endophytic form of _A. corni_ was already present within these plants and capable of causing disease. This was supported further by the greenhouse inoculation experiment, where _A. corni_ isolated from asymptomatic plants was used as an inoculum source that caused the characteristic signs of golden canker in other plants. Other studies also have examined whether endophytes, which can become pathogenic, are capable of causing disease in newly inoculated plant material if they are isolated from asymptomatic plant material. Dakin et al. (2010) isolated _Neofuscosoecum australe_ (Slippers, Crous and M.J. Wingfield) Crous, Slippers and A.J.L. Phillips from asymptomatic _Agonis flexuosa_ (Wild.) Sweet and used it in a pathogenicity trial and found no statistically significant difference between lesions on _A. flexuosa_ when isolates collected from asymptomatic trees or diseased trees were used.

Aurantioporthe corni was present in asymptomatic stems of _C. alternifolia_ in managed landscapes at a relatively high incidence (44.5%) and all plants studied in the managed landscapes had golden canker present on at least one of the multiple stems. Because only a small portion of the nursery material studied had the fungus present in asymptomatic tissue (20%), it appears that nursery plants are infected after being placed in the landscape, either from spores of infected plants growing in the area or by those already present on the plant in the nursery. The nursery material examined had been treated with a frequent fungicide regimen (Supplementary Table 1). However, if a less stringent fungicide regimen had been used on the nursery material, the percentage of plants infected with the fungus might have been higher. Future opportunities exist in investigating whether preventative application of fungicides reduces colonization by _A. corni_ in asymptomatic nursery stock. However, fungicides are not always effective at controlling endophytic fungi that can become pathogenic. Hartman et al. (2009) performed a study on _Sphaeropsis sapinea_ (Fr.) Dyko and B. Sutton (now called _Diplodia pinea_) growing in _Pinus nigra_ J.F. Arnold, Austrian pine, and found no statistically significant differences in the recovery of _D. pinea_ in symptomless shoots after injection with debacarb, tebuconazole, oxycarboxin or water. The fact that the disease has been detected on _C. alternifolia_ in landscape settings in North Dakota (Redlin and Stack 2001) and South Dakota, with no apparent susceptible hosts nearby, suggests that infected asymptomatic nursery material could account for the infections, although long distance dispersal of spores or spores already on the plant material is also plausible.

Redlin and Rossman (1991) considered _Aurantioporthe corni_ as the causal agent of golden canker disease of _Cornus alternifolia_, yet the fulfillment of Koch's postulates has never been reported. In the greenhouse trial 80% of stems inoculated with _A. corni_ developed pycnidia and characteristics of golden canker, while none of the controls developed pycnidia. At the conclusion of the experiment the fungus was isolated from a high number (60%) of inoculated plants, thus filling Koch's postulates for these replicates. The fact that we were not able to isolate _A. corni_ from all replicates in this experiment could be due to environmental conditions in the greenhouse that were beyond our control.

Due to the increased use of _Cornus alternifolia_ in managed landscapes, and the relatively high rate of _Aurantioporthe corni_ living endophytically in asymptomatic stems, further studies are needed to determine what triggers this fungus to cause disease. Previous published studies suggest that the development of golden canker is induced by stress (Redlin and Rossman 1991, Grabowski 2009, Patak 2010, Steiner 2011). For other pathosystems where endophytes considered to be latent pathogens have become pathogenic, the main factors suggested were wounding and drought stress (Bagga and Smalley 1974, Appel and Stipes 1984, Bachi and Peterson 1985, Blodgett et al. 1997, Swart et al. 1987). Stress caused by drought can be a factor in allowing an endophyte to colonize a tree more quickly (Chapela and Boddy 1988, Capretti and Battisti 2007). One of the common contributing factors to the outbreaks of the disease caused by the latent pathogen _Diplodia pinea_ is hail damage after drought (Kotze 1935, Laughton 1937,
Luckhoff 1964, reviewed by Wingfield and Knox-Davis 1980). Determining what factors play a role in causing *A. corni* to transition to a parasitic phase will help in developing recommendations to control and minimize the impact of golden canker disease.

Recommendations for management and control of golden canker of pagoda dogwood can be inferred from our study. Although a plant with signs or symptoms of the disease may have the fungus in asymptomatic tissue, branches with signs of the disease should be removed to help reduce the amount of inoculum. This is especially important in the managed landscape, where a lower proportion of stems were found to have the fungus growing asymptptomatically in stems. Removal of potential inoculum is also recommended for other diseases caused by endophytic fungi that can become pathogenic. Johnson et al. (1996) recommended pruning branches of *Corylus avellana* L. with eastern filbert blight caused by *Anisogomma anomala* (Peck) E. Muller, to reduce the amount of inoculum and remove the fungus from the plant. However, they discuss the limitations of pruning in removing a latent pathogen from trees (Johnson et al. 1996). Determining whether an asymptomatic *Cornus alternifolia* plant is infected with *Aurantioporthe corni* is important when trying to minimize the spread of the disease, especially when moving nursery material to areas that are great distances from susceptible hosts. For those wanting to determine whether an asymptomatic plant has *A. corni* we recommend sampling from the bottom half of the stem, because the majority of stems that were found to be infected with *A. corni* had more segments colonized in that area.

We confirm *Aurantioporthe corni* belongs in Cryphonectriaceae and that it is both morphologically and phylogenetically distinct from any of the pre-existing genera in this family. Although numerous phylogenetic studies have suggested the placement of *Cr. corni* within Cryphonectriaceae rather than Gnomoniaceae, these studies have relied on sequence data from only one or two isolates (Gryzenhout et al. 2006; Begoude et al. 2010; Chen et al. 2011, 2013a; Crane and Burgess 2013). When comparing the 28S nrDNA region (LSU) sequence information from the isolates collected in this study, all isolates had a 99–100% identity match in GenBank BLAST to the *Cr. corni* isolate used by Chen et al. (2013a) illustrating that *Cr. corni* was more appropriately placed in Cryphonectriaceae. In addition to these phylogenetic studies, a key morphological characteristic also supports the placement of *A. corni* outside Gnomoniaceae. *Aurantioporthe corni* exhibits orange stromatic tissue that turns purple in the presence of 3% KOH, a characteristic that unites all members of Cryphonectriaceae within Diaporthales (Gryzenhout et al. 2006). Within Cryphonectriaceae, *A. corni* is both morphologically and phylogenetically distinct from all other known genera. Ascospores of *A. corni* are most frequently single-septate, which is common in Cryphonectriaceae, but occasionally they can be multi-septate (Fig. 5c). *Amphila* Gryzenh., Glen and M.J. Wingf. is the only other genus in the family having single to multi-septate ascospores (Vermuelen et al. 2011; Chen et al. 2013a, b; Crane and Burgess 2013). *Aurantioporthe* can easily be distinguished from *Amphila* by observing the conidiomata as they are immersed to semi-immersed in *Aurantioporthe* and superficial in *Amphila* (Gryzenhout et al. 2005). Previous phylogenetic analysis also supports that *Aurantioporthe* is distinct from other genera in the family (Gryzenhout et al. 2006, 2010). The separation of *A. corni* from clades representing other genera in the family is strongly supported by our phylogenetic analysis (95% confidence level/1.0 posterior probability for ITS and 92% confidence level/1.0 posterior probability for TUB). Morphological characteristics and the phylogenetic position of *A. corni* both reinforce the need to establish a new genus within Cryphonectriaceae to accommodate *Aurantioporthe*.

Acknowledgments

We thank Dr Fredrick Barker and Dr Benjamin Held for their assistance with the phylogenetic analysis. Also we thank Ellen Bloch and Dr Barbara Thiers (New York Botanical Garden), Dr Amy Rossman (USDA-ARS) and Anita Cholewa (Bell Museum of Natural History) for their assistance in acquiring herbarium specimens. We also are thankful for Dr Rossman’s assistance with reviewing the manuscript and helpful comments. We thank Kathleen Kitka, Amy Highland, Robert Mulrooney, Sarah Rummery, Andy Schmitz, William Cullina, Linda Blue and Tracy Beerley for sending samples of stems infected with *Aurantioporthe corni*. This work was supported by the USDA National Institute of Food and Agriculture, Hatch Project MIN-22-055 and MIN-21-055.

Literature cited

Bagga DK, Smalley EB. 1974. The development of Hypoxylon canker of *Populus tremuloides* role of interacting
—. 1992. Notes on the Lophiostomataceae (Pleospora-
Begoue ADB, Gryzenhout M, Wingfield MJ, Roux J. 2010. Auri- filum, a new fungal genus in the Cryptonectria-
caeae from Terminalia species in Cameroon. Antonie van Leeuwenhoek 98:263–278, doi:10.1007/s10482-
010-9467-8
Crane C, Burgess TT. 2013. Luteicercus shearri gen. sp. nov. (Diaporthales, Cryptonectriaceae) pathogenic to Proteaceae in the South Western Australian floristic region. IMA Fungus 4:111–122, doi:10.5598/ifungus.2015.04.01.11
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolution-
Fuckel L. 1870. Synobaeae mycologicae. Beitrage zur Kenntnis der rheinischen Pilze. Jahrbucher des Na-
saischen Vereins fur Naturkunde 23–24:1–159.
lib.umn.edu/efans/ygnews/2009/04/golden_canker_ on_pagoda_dogwo.html
—. Targar M, Clegg PA, Wingfield MJ. 2010. Cryptometron aestuens gen. sp. nov. (Cryptonectri-
Guindon S, Gascuel O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-

