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Efficient lignin depolymerization is unique to the wood decay
basidiomycetes, collectively referred to as white rot fungi.
Phanerochaete chrysosporium simultaneously degrades lignin
and cellulose, whereas the closely related species, Ceriporiopsis
subvermispora, also depolymerizes lignin but may do so with rel-
atively little cellulose degradation. To investigate the basis for
selective ligninolysis, we conducted comparative genome analysis
of C. subvermispora and P. chrysosporium. Genes encoding man-
ganese peroxidase numbered 13 and five in C. subvermispora and
P. chrysosporium, respectively. In addition, the C. subvermispora
genome contains at least seven genes predicted to encode lac-
cases, whereas the P. chrysosporium genome contains none. We
also observed expansion of the number of C. subvermispora desa-
turase-encoding genes putatively involved in lipid metabolism.
Microarray-based transcriptome analysis showed substantial up-
regulation of several desaturase and MnP genes in wood-con-
taining medium. MS identified MnP proteins in C. subvermispora
culture filtrates, but none in P. chrysosporium cultures. These
results support the importance of MnP and a lignin degradation
mechanism whereby cleavage of the dominant nonphenolic
structures is mediated by lipid peroxidation products. Two C. sub-
vermispora genes were predicted to encode peroxidases structur-
ally similar to P. chrysosporium lignin peroxidase and, following
heterologous expression in Escherichia coli, the enzymes were
shown to oxidize high redox potential substrates, but not Mn2+.
Apart from oxidative lignin degradation, we also examined cellu-

lolytic and hemicellulolytic systems in both fungi. In summary, the
C. subvermispora genetic inventory and expression patterns ex-
hibit increased oxidoreductase potential and diminished cellulo-
lytic capability relative to P. chrysosporium.
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The most abundant source of photosynthetically fixed carbon
in land ecosystems is plant biomass, composed primarily of

cellulose, hemicellulose, and lignin. Many microorganisms are
capable of using cellulose and hemicellulose as carbon and en-
ergy sources, but a much smaller group of filamentous fungi in
the phylum Basidiomycota has also evolved with the unique
ability to efficiently depolymerize and mineralize lignin, the most
recalcitrant component of plant cell walls. Collectively known as
white rot fungi, they remove lignin to gain access to cell wall
carbohydrates for carbon and energy sources. These wood-decay
fungi are common inhabitants of fallen trees and forest litter. As
such, white rot fungi play a pivotal role in the carbon cycle. Their
unique metabolic capabilities are of considerable recent interest
in bioenergy-related processes (1).
White rot basidiomycetes differ in their gross morphological

patterns of decay (ref. 2 and refs. therein). Phanerochaete chrys-
osporium simultaneously degrades cellulose, hemicellulose, and
lignin, whereas a few others such as the closely related polypore
species, Ceriporiopsis subvermispora, have the ability to remove
lignin in advance of cellulose. The mechanistic basis of this selec-
tivity is unknown.
The roles of P. chrysosporium lignin peroxidase [LiP; Enzyme

Commission (EC) 1.11.1.14] and manganese peroxidase (EC
1.11.1.13) have been intensively studied (3). Reactions catalyzed by
LiP include Cα-Cβ cleavage of propyl side chains in lignin and lignin
models, hydroxylation of benzylic methylene groups, oxidation of
benzyl alcohols to the corresponding aldehydes or ketones, phenol
oxidation, and aromatic ring cleavage in nonphenolic lignin model
compounds. In addition to P. chrysosporium, multiple ligninolytic
peroxidase isozymes and their corresponding genes have been
identified in several efficient lignin-degrading fungi (4). In some
white rot fungi, such as the oystermushroomPleurotus ostreatus and
related species, LiP is absent, but a third ligninolytic peroxidase type
that combines LiP and MnP catalytic properties, versatile peroxi-
dase (VP; EC 1.11.1.16), has been characterized (4, 5) and identi-
fied by genome analysis (6). Repeated and systematic attempts have
failed to identify LiP (or VP) activity in C. subvermispora cultures,
but substantial evidence implicates MnP in ligninolysis (e.g., refs 7,
8). First discovered in P. chrysosporium cultures, this enzyme oxi-
dizesMn2+ toMn3+, using H2O2 as an oxidant (9, 10).MnP cannot
directly cleave the dominant nonphenolic structures within lignin,
but it has been suggested that oxidation may be mediated by lipid
peroxidation mechanisms that are promoted by Mn3+ (3).
In addition to peroxidases, laccases (EC 1.10.3.2) have been

implicated in lignin degradation. Several have been characterized
from C. subvermispora cultures (11), whereas no genes encoding
laccase, in the strict sense, are present in the P. chrysosporium ge-
nome (12). The mechanism by which laccases might degrade lignin
remains unclear, as the enzyme lacks sufficient oxidation potential
to cleave nonphenolic linkages within the polymer. However, var-
ious mediators have been proposed (13).
Other components commonly ascribed to ligninolytic systems

include extracellular enzymes capable of generating hydrogen
peroxide. Glucose–methanol–choline oxidoreductases such as
aryl-alcohol oxidase, methanol oxidase and pyranose oxidase,
together with copper radical oxidases such as glyoxal oxidase,
have been characterized in P. chrysosporium (14), but none of
these activities have been reported in C. subvermispora cultures.
Conceivably, selective lignin degradation patterns may involve

modulation of the hydrolytic enzymes commonly associated with
cellulose and hemicellulose degradation. These systems are well
characterized in P. chrysosporium, whereas little is known about
C. subvermispora glycoside hydrolases (GHs) (15).
To further our understanding of selective ligninolysis, we report

here initial analysis of the C. subvermispora genome. Comparison
with the genome, transcriptome, and secretome ofP. chrysosporium
reveal substantial differences among the genes that are likely to be
involved in lignocellulose degradation, providing insight into di-
versification of the white rot mechanism.

Results
General Features of C. subvermispora Genome. The 39-Mb haploid
genome of C. subvermispora monokaryotic strain B (16) (SI Ap-
pendix, Fig. S1) is predicted to encode 12,125 proteins (SI Appendix
provides detailed assembly and annotation information). For com-
parison, the latest release of the related polypore white rot fungus
P. chrysosporium features 35.1 Mb of nonredundant sequence and
10,048 gene models (12, 17). The overall relatedness of these pol-
ypore fungi was clearly evident from the syntenic regions between
their largest scaffolds and large number of similar (BLASTE-values
<10−5) protein sequences, i.e., 74% (n= 9,007) ofC. subvermispora
models aligned with P. chrysosporium and 82% (n = 8,258) of
P. chrysosporium models aligned with C. subvermispora. Most (n =
5,443) of these pairs were also reciprocal “best hits” and are thus
likely to represent orthologues. Significant expansions compared
with P. chrysosporium and/or other sequenced Agaricomycetes were
observed in transporters, various oxidoreductases including perox-
idases, cytochrome p450s, and other gene families discussed here.
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Fig. 1. Phylogenetic analysis of selected peroxidases from C. subvermispora
and P. chrysosporium. The analysis was performed in RAxML Blackbox under
the model GTRGAMMA, using the substitution matrix WAG with 100 rapid
bootstrap replicates. The ascomycete sequences of class II peroxidases were
used to root the tree (http://phylobench.vital-it.ch/raxml-bb/) (32). Ball-milled
aspen versus glucose transcript ratios (BMA/Glu) are indicated, and complete
data are available under Gene Expression Omnibus accession nos. GSE1473 and
GSE34636 for P. chrysosporium and C. subvermispora, respectively.
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Peroxidases. Twenty-sixC. subvermispora genemodels are predicted
to encode heme peroxidases. Fifteen were classified as probable
ligninolytic peroxidases, which included 13MnPs, a VP, and an LiP.
These classifications were based on homology modeling (18) with
particular attention to conserved Mn2+ oxidation and catalytic
tryptophan sites (19, 20). Those classified as MnPs include seven
typical “long”MnPs specific for Mn2+, and a “short”MnP also able
to oxidize phenols and 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonate) in the absence of Mn2+, as previously reported in the
P. ostreatus genome (6). The remaining five could be classified as
“extra long”MnPs in viewof their longC-termini, as reported for the
first time in Dichomitus squalens MnPs (21). Only four full-length
MnP-encoding genes were previously identified in C. subvermispora
(GenBank accession nos. AAB03480, AAB92247, AAO61784, and
AF161585). Additional class II peroxidases have long been sus-
pected (22, 23), but no LiP/VP-like transcripts or activities have
been identified. Thus, the repertoire of C. subvermispora perox-
idases differs from P. chrysosporium, which features 10 LiP and
five MnP genes (Fig. 1). Extending comparative analysis to 90 ba-
sidiomycete peroxidases (SI Appendix, Fig. S3) suggested that the
C. subvermispora VP and LiP represent divergent proteins, an ob-
servation consistent with their catalytic properties (as detailed later).
By using a previously developed Escherichia coli expression sys-

tem including in vitro activation (24, 25), the C. subvermispora pu-
tative LiP (Cesubv118677) and VP (Cesubv99382) were evaluated
for their oxidation of three representative substrates, namelyMn2+,
the high redox-potential veratryl alcohol (VA), and Reactive Black
5 (RB5) (Table 1). The corresponding steady-state kinetic constants
were compared with those of Pleurotus eryngii VP (isozyme VPL;
AF007244), a P. chrysosporium LiP (isozyme H8; GenBank acces-
sion no. Y00262), and a conventional C. subvermispora MnP
(Cesubv117436; Fig. 1) also produced in E. coli. The putative
C. subvermispora LiP (protein model Cesubv118677) was unable
to oxidize Mn2+, as expected given the absence of a typical man-
ganese oxidation site in its theoretical molecular structure
(SI Appendix, Fig. S2). A conventional C. subvermispora MnP pro-
tein (Cesubv117436), also predicted based on structure, and the VP
from P. eryngii showed Mn2+ oxidation. Surprisingly, the C. sub-
vermispora protein designated Cesubv99382, which we tentatively
classified as a VP, was not able to oxidize Mn2+, irrespective of
the presence of a putative manganese oxidation site in its struc-
tural model (SI Appendix, Fig. S2). The catalytic behaviors of
Cesubv99382 and Cesubv118677 are very similar. Both enzymes
oxidize VA, the typical LiP (and VP) substrate, and also RB5,
a characteristic substrate of VP (that LiP is unable to oxidize in the
absence of mediators), with similar Km, kcat, and kcat/Km values
(Table 1).
Peroxidase expression patterns differed significantly between

C. subvermispora and P. chrysosporium. In medium containing

ball-milled Populus grandidentata (aspen) as sole carbon source,
transcript levels of two C. subvermispora MnPs were significantly
up-regulated relative to glucose medium. Liquid chromatogra-
phy/tandem MS (LC-MS/MS) analysis of culture filtrates iden-
tified peptides corresponding to three C. subvermispora MnP
genes (Fig. 1). In identical media, none of the P. chrysosporium
MnP genes were up-regulated, but significant accumulation of
two LiP gene transcripts was observed relative to glucose (Fig.
1). No peroxidases were identified by LC-MS/MS analysis of
P. chrysosporium culture filtrates.

Multicopper Oxidases. Nine multicopper (MCO)-encoding
C. subvermispora genes may be relevant to lignin degradation.
Multiple alignments emphasizing signature regions (26, 27) re-
vealed the presence of seven laccases, in the strictest sense, one
of which was previously known (28). This observation is in distinct
contrast to the P. chrysosporium genome, which contains no lac-
cases (12) (Fig. 2). Consistent with a role in lignocellulose modi-
fication, transcript levels corresponding to C. subvermispora
laccase was significantly up-regulated (more than threefold; P <
0.01) in media containing ball-milled P. grandidentata wood (as-
pen) relative to glucose medium (Fig. 2).
In addition to the laccases, C. subvermispora MCO-encoding

genes included a canonical ferroxidase (Fet3). Involved in high-af-
finity iron uptake, the Fet3 genes ofC. subvermispora (Cesubv67172)
and Postia placenta (Pospl129808) show significant up-regulation on
aspen-containingmedium, whereas the P. chrysosporium orthologue
(Phchr26890) is sharply down-regulated under identical conditions
(Fig. 2). This strongly suggests that iron homeostasis is achieved by
different mechanisms in these fungi.

Other Enzymes Potentially Involved in Extracellular Redox Processes.
Peroxide and free radical generation are considered key compo-
nents of ligninolysis, and analysis of the C. subvermispora genome,
transcriptome, and secretome revealed a diverse array of relevant
proteins. These included four copper radical oxidases, cellobiose
dehydrogenase, various other glucose–methanol–choline oxidor-
eductases, and several putative transporters. Possibly related to
selectivity of ligninolysis, expression patterns exhibited by cer-
tain genes, e.g., methanol oxidase, differed significantly between
P. chrysosporium andC. subvermispora. (SIAppendix andSIAppendix,
Table S1, include detailed listings of all annotated genes, transcript
levels, and LC-MS/MS identification of extracellular proteins.)
Of particular relevance to lignin degradation by MnP, we ob-

served a significant expansion of the genes putatively involved in
fatty acid metabolism (Table 2). Relative to the single gene in
P. chrysosporium (encoding Phchr125220) theΔ-12 fatty acid desa-
turase gene family was particularly expanded (five paralogues)
in C. subvermispora. The P. chrysosporium and C. subvermispora

Table 1. Steady-state kinetic constants of three peroxidases from C. subvermispora genome vs.
P. chrysosporium LiP and P. eryngii VP

Constant

C. subvermispora
P. chrysosporium
Y00262 (LiPH8)

P. eryngii
AF007244 (VPL)99382 (“VP”) 118677 (LiP) 117436 (MnP)

Mn2+

Km, μM ND b ND 58.5 ± 8.5 ND 181 ± 10
kcat, s

−1 0 0 331 ± 20 0 275 ± 4
kcat/Km, mM−1·s−1 0 0 5,600 ± 500 0 1,520 ± 70

VA
Km, μM 3,120 ± 526 1,620 ± 290 ND 190 ± 17 4,130 ± 320
kcat, s

−1 8.6 ± 0.7 8.7 ± 0.6 0 17.5 ± 0.5 9.5 ± 0.2
kcat/Km, mM−1·s−1 2.8 ± 0.3 5.4 ± 0.7 0 92.0 ± 6.0 2.3 ± 0.1

RB5
Km, μM 3.97 ± 0.65 4.48 ± 0.64 ND ND 3.4 ± 0.3
kcat, s

−1 9.8 ± 0.9 7.3 ± 0.5 0 0 5.5 ± 0.3
kcat/Km, mM−1·s−1 2,460 ± 185 1,620 ± 138 0 0 1,310 ± 90

Reactions were at 25 °C in 0.1 M tartrate (pH 3 for VA, pH 3.5 for RB5, and pH 5 for Mn2+). ND, not determined
because of lack of activity. Means and 95% SEM are provided.
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genes were previously designated Pcfad2 and Csfad2 (29, 30), re-
spectively. Transcript levels of P. chrysosporium Pcfad2 were sig-
nificantly reduced (0.25-fold;P< 0.01) inmedia with aspen relative
to glucose, whereas a C. subvermispora Δ-12 fatty acid desaturase
(Cesubv124119) was up-regulated (2.9-fold; P< 0.01).With regard
toΔ-9 fatty acid desaturases, only two P. chrysosporium genes were
detected and, as in the case of Δ-12 fatty acid synthetases, both
were down-regulated more than twofold (P < 0.01). Modest
transcript accumulation (1.48-fold; P = 0.03) was observed for
one of the four C. subvermispora Δ-9 fatty acid desaturases
(Cesubv117066) in aspen wood media relative to glucose media.
Increased numbers of MnP and lipid metabolism genes, viewed
together with their expression patterns, are consistent with an
important role for peroxyl radical attack on nonphenolic sub-
structures of lignin.

Carbohydrate Active Enzymes.Overall, the number of GHs encoded
by the C. subvermispora genome is slightly lower than that of other
plant cell wall degrading basidiomycetes whose genomes have been
sequenced (Dataset S1 and SI Appendix, Table S1). The number of
GHs in C. subvermispora (n = 171) is close to that in P. chrys-
osporium (n=177), and noticeably different in total number and in
family distribution compared with the phylogenetically related
brown rot fungus P. placenta (n=145; Fig. 3). Differences between
C. subvermispora and P. chrysosporium are limited to a few families,
but these distinctions might have consequences for degradation
of plant cell wall polysaccharides. For example, C. subvermispora
contained only three predicted proteins belonging to family GH7,
an important group typically featuring “exo” cellobiohydrolases. In
contrast, at least six GH7 protein models were identified in the
P. chrysosporium genome. Family GH3, containing β-glucosidases
involved in the hydrolysis of cellobiose, was represented by only six
gene models in the C. subvermispora genome, unlike the 11 GH3
models found inP. chrysosporium. In addition, theC. subvermispora
genome revealed only 16 cellulose binding modules (CBM1s),
compared with 31 CBM1-containing protein models found in the
P. chrysosporium genome.
In contrast to the oxidative systems, transcriptome and secre-

tome analysis of GHs generally showed lower expression
in C. subvermispora relative to P. chrysosporium (Table 3 and SI
Appendix, Table S1). Transcripts corresponding to 30 C. sub-
vermispora GH-encoding genes accumulated more than twofold
(P < 0.05) in aspen wood- vs. glucose-containing media. In con-
trast, 52 P. chrysosporium GH-encoding genes were up-regulated
(more than twofold; P < 0.05). MS unambiguously identified 60
and 121 proteins in filtrates from aspen wood media of P. chrys-
osporium and C. subvermispora cultures, respectively, among
which 18 and three, respectively, corresponded to GHs.
Genes encoding likely cellulases showed only modest tran-

script levels in C. subvermispora (Table 3). C. subvermispora
transcripts corresponding to single copies of a CBM1-containing
cellobiohydrolase (GH7), a CBM1-containing endo-β-1,4-gluca-
nase (GH5), and a GH12 endoglucanase, all canonical cellulases,
were significantly up-regulated (more than twofold; P < 0.01) in
aspen wood relative to glucose media. Under identical con-
ditions, accumulating P. chrysosporium transcripts included four
GH7 cellobiohydrolases, two GH5 endo-β-1,4-glucanases, and
two GH12 endoglucanases (Table 3).
The foregoing analysis is limited to expression patterns of

genes with putative function inferred from sequence compar-
isons. However, many of the predicted proteins that show no
significant sequence similarity to known proteins could be im-
portant in selective ligninolysis. Specifically, we identified 139
“hypothetical” C. subvermispora proteins whose sequences show
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Fig. 2. Phylogenetic analysis of all MCO oxidases from C. subvermispora,
P. chrysosporium, and the related polypore P. placenta. Analysis was performed
by using RAxMLwith theWAG substitution matrix, γ-distributed rates among
sites, a proportion of invariant sites and empirical amino acid frequencies
(i.e., m = PROTGAMMAIWAGF). Shown is themaximum-likelihood tree found
by using 1,000 heuristic searches, with bootstrap support shown for nodes
with values greater than 50%. As in Fig. 1, transcript level ratios are adjacent
to protein identification numbers. Complete P. placenta microarray data are
available under Gene Expression Omnibus accession no. GSE12540 (33).

Table 2. Number, overall relatedness, and transcript levels of genes putatively involved in lipid metabolism

C. subvermispora

Comment

P. chrysosporium

P valueProtein ID Glc BMA B/G P value Protein ID E-value ID, % Glc BMA B/G

Δ-12 fatty acid desaturase (COG 3239)
124119 11.01 12.54 2.90* < 0.01 — 125220 1.00 × 10−67 72 12.76 10.77 0.25* <0.01
58880 10.36 10.29 0.96 0.729 — 125220 3.00 × 10−70 72 12.76 10.77 0.25* <0.01
109092 10.58 10.23 0.78 0.0149 — 125220 5.00 × 10−59 72 12.76 10.77 0.25* <0.01
155708 10.67 10.11 0.68 < 0.01 — 125220 2.00 × 10−77 72 12.76 10.77 0.25* <0.01
112068 12.74 12.66 0.94 0.653 Csfad2 (29); Pcfad2 (30) 125220 0.00 72 12.76 10.77 0.25* <0.01

Δ-9 fatty acid desaturase (COG 1398)
117066 11.78 12.35 1.48 0.0298 CsOle1 & PcOle1 (29) 128650 0.00 81 13.82 12.48 0.40* <0.01
87875 8.93 8.94 1.01 0.88 — 121154 2.00 × 10−68 33 13.49 12.38 0.46* 0.017
117063 8.95 8.91 0.97 0.527 5′ needs editing 121154 2.00 × 10−62 33 13.49 12.38 0.46* 0.017
121693 9.64 9.51 0.92 0.179 — 121154 1.00 × 10−154 33 13.49 12.38 0.46* 0.017

Normalized microarray data are presented as log2 signal strength average of fully replicated experiments. Significant accumulation (B/G ratio) of tran-
scripts in BMA relative to glucose-grown (Glc) cultures was determined using the Moderated t test and associated FDR. See Gene Expression Omnibus
accession no. GSE14736 (33) for P. chrysosporium data. Both gene families are expanded in C. subvermispora relative to P. chrysosporium. BMA, ball-milled
aspen; COG, clusters of orthologous groups; FDR, false detection rate.
*Significant ratio (<0.5-fold to >2-fold).
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no significant similarity to P. chrysosporium models but were
otherwise highly expressed, i.e., transcript levels more than two
SDs above the genome-wide mean (n = 12084, X = 10.56) or
more than twofold transcript accumulation in aspen wood media
vs. glucose or unambiguously identified via MS (at least two
unique peptide sequences).

Discussion
C. subvermispora and P. chrysosporium are both members of
the order Polyporales, but they differ sharply in their ability to
selectively degrade lignin. The genetics and physiology of
P. chrysosporium have been intensively studied for decades. Largely
because of its efficient degradation of plant cell walls, including
the recalcitrant lignin, P. chrysosporium was selected as the first
sequenced basidiomycete (12). In contrast, C. subvermispora has
received less attention, although its selective lignin degradation
is well known (2). Overall, our comparisons of C. subvermispora
and P. chrysosporium gene repertoires, together with expression
patterns on a complex lignocellulose substrate, suggest divergent
strategies of plant cell wall degradation and provide clues about
mechanisms of selective delignification.
Generally accepted as important components of lignin degra-

dation systems, class II peroxidases were skewed toward expansion
of the number of MnPs and accompanied by a putative LiP
(Cesubv118677) and a VP (Cesubv99382). To confirm these pre-
dictions, both peroxidases were obtained by E. coli expression, and
their steady-state kinetic constants for oxidation of selected per-
oxidase substrates were compared with those of a typicalMnP from
theC. subvermispora genome (Cesubv117436), a well characterized
VP from P. eryngii (GenBank AF007244), and the well studied
P. chrysosporium LiP isozyme H8 (all expressed in E. coli).
Cesubv118677 and Cesubv99382 are able to directly oxidize VA
and RB5, a unique characteristic of VP, exhibiting similar catalytic
efficiency values to those observed for typical VPs. Moreover, both
peroxidases are unable to oxidize Mn2+, despite the presence in
Cesubv99382 of a putative oxidation site for this cation. Thus,
considering their sequences (Fig. 1 and SI Appendix) and catalytic
activities (Table 1), these two peroxidases seem to represent an
intermediate evolutionary state between LiP and VP.
In addition to the distinct repertoire of class II peroxidases,

selective ligninolysis of C. subvermispora may be related, in part,
to the expansion and coexpression of the genes putatively in-
volved in lipid metabolism. Substantial evidence implicates MnP
involvement (7, 8) in lignin degradation, but this enzyme cannot
directly cleave the dominant nonphenolic structures within lig-
nin. Nevertheless, several studies support mechanisms involving
peroxidation of lipids (3). The expansion of C. subvermispora
desaturase and MnP gene families, together with their high ex-
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Fig. 3. Distribution ofGHs in P. placenta (inner ring), C. subvermispora (middle
ring), and P. chrysosporium (outer ring). Families absent from at least one
species are underlined. Detailed listings of gene numbers within these and
other species appear in Dataset S1, and expression patterns (transcript and
protein) are presented in SI Appendix, Table S1.

Table 3. Expression of C. subvermispora and P. chrysosporium cellulases

C. subvermispora P. chrysosporium

Microarrays* Microarrays*LC-MS/MS
(unique

peptides)† Signal (log2)

LC-MS/MS
(unique

peptides)† Signal (log2)

Putative activity/family ID no. Glc BMA Glc BMA B/G ratio P value ID no. Glu BMA Glu BMA B/G ratio P value

CBH1/GH7 136606 — — 11.0 12.6 3.02‡ <0.01 126964 — — 10.6 10.7 1.08 0.45
CBH1/GH7 89943 — 1 8.84 8.96 1.09 0.09 137042 — — 10.1 10.3 1.13 0.18
CBH1/GH7 109983 — — 9.09 9.03 0.96 0.32 127029 — 3‡ 10.3 12.1 3.53‡ <0.01
CBH1/GH7 — — — — — — — 137372 — 5‡ 9.6 12.8 9.18‡ <0.01
CBH1/GH7 — — — — — — — 129072 — — 10.4 12.2 3.40‡ <0.01
CBH1/GH7 — — — — — — — 137216 — — 10.2 14.5 19.6‡ <0.01
CBH2/GH6§ 72777 — 2‡ — — — — 133052 — 2‡ 11.8 15.3 11.5‡ <0.01
EG/GH5 79557 — — 10.2 14.0 13.9‡ <0.01 6458 — — 12.1 14.8 6.46‡ <0.01
EG/GH5 117046 — — 9.8 10.8 1.99 0.02 4361 — 2‡ 10.5 14.1 12.2‡ <0.01
EG/GH12 34428 — — 8.95 10.9 3.81‡ <0.01 8466 — 2‡ 11.4 14.0 5.94‡ <0.01
EG/GH12 111819 — — 9.75 10.0 1.20 0.07 7048 — 3‡ 12.1 15.1 8.16‡ <0.01

BMA, ball-milled aspen; FDR, false detection rate; Glc, glucose.
*As in Table 2, normalized microarray data are presented as log2 signal strength average of three fully replicated experiments. Significant accumulation (B/G
ratio) of transcripts in BMA relative to glucose grown cultures was determined using the moderated t test and associated FDR.
†Number of unique peptides detected by LC-MS/MS after 5 d growth on BMA or glucose medium. Complete microarray and LC-MS/MS results are listed in SI
Appendix, Table S1. For detailed P. chrysosporium microarray and LC-MS/MS data, see refs. 33 and 31, respectively.
‡Significant ratio and/or peptide score.
§Initial microarrays did not feature probes for the C. subvermispora gene encoding GH6 (protein model Cesubv72777), but multiple ESTs and the presence of
detectable peptides show the gene is expressed, and likely at substantial levels.
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pression levels relative to P. chrysosporium (Table 2 and Fig. 1),
are consistent with a role in lignin degradation.
Overall numbers and family distributions of GH-encoding

genes were similar between C. subvermispora and P. chrys-
osporium (Fig. 3), but subtle differences in number and expres-
sion were noted. Among the cellulases, cellobiohydrolases (cel7s)
and endoglucanases (cel5s and cel12s) were particularly notable
in their transcript and protein accumulation in P. chrysosporium
cultures (Table 3). In contrast, expression of the C. subvermispora
cellulolytic system was substantially lower than P. chrysosporium,
whereas the converse was observed for enzymes important in
extracellular oxidative systems (Figs. 1 and 2, Table 2, and SI
Appendix, Table S1).
These observations provide functional models that may explain

the shift toward selective ligninolysis byC. subvermispora. Definitive
mechanisms remain uncertain, but our investigations identify a
subset of potentially important genes, including those encoding
hypothetical proteins. More detailed functional analysis is compli-
cated by the insoluble nature of lignocellulose substrates and by the
slow, asynchronous hyphal growth of lignin degrading fungi. Direct
and persuasive proof of gene function would be aided by de-
velopment of experimental tools such as gene disruption/suppres-
sion or isozyme-specific immunolocalization of secreted proteins.

Methods
Genome Sequencing, Assembly, and Annotation. A whole genome shotgun
approach was used to sequence C. subvermisporamonokaryotic strain B (16) (US
Department of Agriculture Forest Mycology Center, Madison, WI). Assembly
and annotations are available through interactive visualization and analysis
tools from the Joint Genome Institute genome portal (http://www.jgi.doe.
gov/Ceriporiopsis) and at DNA Data Base in Japan/European Molecular

Biology Laboratory/GenBank under project accession no. AEOV00000000.
Details regarding the assembly, repetitive elements (Dataset S2), ESTs an-
notation, and specific gene sets are provided separately (SI Appendix,
Figs. S1–S6).

MS. Soluble extracellular proteins were concentrated from C. subvermispora
cultures containing ball-milled aspen as previously described for P. chrys-
osporium (31) This medium allows rapid growth on a lignocellulose substrate
more relevant than glucose- or cellulose-containing media. However, the
milling process pulverizes wood cell walls and the culture conditions may not
replicate “natural” decay processes. Sample preparation and nano-LC-MS/
MS analyses were performed as described in SI Appendix. Peptides were
identified by using a Mascot search engine (Matrix Science) against protein
sequences of 12,125 predicted gene models described earlier. Complete
listings of carbohydrate active enzymes and oxidative enzymes, including
peptide sequences and scores, are provided in SI Appendix, Table S1.

Expression Microarrays. NimbleGen arrays (Roche) were designed to assess ex-
pression of 12,084 genes during growth on ball-milled aspen (P. grandidentata)
or on glucose as sole carbon sources. Methods are detailed in SI Appendix, and
all data deposited under Gene Expression Omnibus accession no. GSE34636.
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Correction for “Comparative genomics of Ceriporiopsis sub-
vermispora and Phanerochaete chrysosporium provide insight into
selective ligninolysis,” by Elena Fernandez-Fueyo, Francisco J.
Ruiz-Dueñas, Patricia Ferreira, Dimitrios Floudas, David S.
Hibbett, Paulo Canessa, Luis F. Larrondo, TimY. James, Daniela
Seelenfreund, Sergio Lobos, Rubén Polanco, Mario Tello, Yoichi
Honda, Takahito Watanabe, Takashi Watanabe, Ryu Jae San,
Christian P. Kubicek, Monika Schmoll, Jill Gaskell, Kenneth
E. Hammel, Franz J. St. John, Amber Vanden Wymelenberg,
Grzegorz Sabat, Sandra Splinter BonDurant, Khajamohiddin
Syed, Jagjit S. Yadav, Harshavardhan Doddapaneni, Venkata-
ramanan Subramanian, José L. Lavín, José A. Oguiza, Gumer
Perez, Antonio G. Pisabarro, Lucia Ramirez, Francisco Santoyo,
Emma Master, Pedro M. Coutinho, Bernard Henrissat, Vincent
Lombard, Jon Karl Magnuson, Ursula Kües, Chiaki Hori, Kiyo-
hiko Igarashi, Masahiro Samejima, BenjaminW. Held, Kerrie W.
Barry, Kurt M. LaButti, Alla Lapidus, Erika A. Lindquist, Susan
M. Lucas, Robert Riley, Asaf A. Salamov, Dirk Hoffmeister,
Daniel Schwenk, Yitzhak Hadar, Oded Yarden, Ronald P. de
Vries, Ad Wiebenga, Jan Stenlid, Daniel Eastwood, Igor V.
Grigoriev, Randy M. Berka, Robert A. Blanchette, Phil Kersten,
Angel T. Martinez, Rafael Vicuna, and Dan Cullen, which ap-
peared in issue 14, April 3, 2012, of Proc Natl Acad Sci USA
(109:5458–5463; first published March 20, 2012; 10.1073/
pnas.1119912109).
The authors note that the author name Ryu Jae San should

instead appear as Jae San Ryu. The corrected author line appears
below. The online version has been corrected.
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